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ABSTPACT

Circular electrestrictive plates, oppositely polarized
and cemerted together to form bilamellate disks, are sub-
me1ged in 2 semi-infinite medium ard driven by an applied
electric field, or by applied acoustic pressures, to radiate
sound. Formulasfor plate veiocity, acoustic power radiated,
acoustic pressure, mechanical Q. etc., have been derived
for the cascs of centrally supported and vdge supported

disks in infinite baffies.
PROBLEM STATUS
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ON THE THEORY OF FLEXURAL PIEZOCERAMIC
CIRCULAR PLATE SOUND RADIATORS

INTRODUCTION

A convenient source of underwater sound in the range of 100 cps to 50 ke iv the
family of flexural, circular, piezoceramic bilamellate disks. These, in diameters of 0.5
to 25 cm can radiate up to 1/2 to 1 watt per square centimeter for applied electric fields
of 150 to 250 volts rms per millimeter of half thickness, pulsed power. A simplified
theory of the performance characteristics of such sources is presented in this report.

In the {first part of the theory the piezoceramic disk is centrally supported, and in the
second part the disk is simply supported on its edge. Both cases are treated only with
reference to the presence of an infinite stiff baffle enclosing the half space into which the
sources are radiating acoustic energy. The analysis proceeds on the assumptions of a
Class I (Fischer's classification) piezoelectric transducer and not on the basic laws of
the Class II transducer, to which the electrostrictive types belong. This has been done
to avoid transduction ratios and lumped parameters which are frequency dependent. As
a result of this choice, the material constants appearing in the course of the paper are
only "effective" piezoelectric moduli, to be measured on particular samples of polarized
ceramics by techniques conventionally applied to true piezoelectric crystals. In short,
the ceramics have been converted to "effective" crystals, and standard piezoelectric
theory has been applied to their behavior.

CENTRALLY SUPPORTED FLEXURAL DISKS

The Structure

The transducer (Fig. 1) is a bilamellar disk, one or both halves of which may be
actively polarized electrostrictive ceramics. While it is always advantageous to have a
disk of two active halves, the use of a central support may require half of the bilamellar
structure to be a passive metal, e.g., brass. Each face of an active ceramic plate is
completely electroded with {ired silver paste. Permanent polarization of the ceramic is
in the z direction, normal to the plate. The structure is driven into forced flexural vibra-
tion by the application of an alternating electric field E applied across the thickness of
the ceramic plate.* Upon submersion, the disk radiates sound into a semi-infinite liquid
medium of characteristic impedance o c,, from a circular hole of equal diameter in an
infinite stiff baffle, '

Figure 2 shows the conventions of signs which hold in this analysis. The neutral
axis of bending is set at z = 0. For small displacements w in the positive z direction, the
displacement u in the x direction is u= -2(3w/3x), where 3w/3x is positive, as shown. The
strain S, in the x direction is S, = 3u/3x = -z(3?w/3x?). We note that 3?w/ox? is nega-
tive when w is positive and that the strain is positive (tension) for positive z. Similarly,
for displacement v in the y direction, the strain in the y direction is S,, = -z(3av/y) =
-z(32w/2y?), A positive bending moment M, or M, is one which causes a deflection of
the disk in the positive z direction, i.e., downward, as shown, and induces resisting
stresses T,, or T,,.

*See List of Symbols at end of report.
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Figure 1 - Schematic cross section of a piezoceramic-brass
circutar nlate sound radiator
! The same conventions hold for 2
o x——>X cylindrical coordinate system in whick
i the origin corresponds to the origin of
) ; the xyz Cartesian system.
Equations of State
The circular bilamellar disk (half
thickness h) is assumed "very thin," -d
the stress system correspondingly two-
dimensional. This restriction to stresses
TANGENT TO in a plane is indicated at any stage in the
NEUTRAL analysis by a bar over all material con-
stants (i.e., € ,, &,,, etc.). A cylindri-
cal coordinate system is used, and, for
M convenience in writing, r, = z are desig-

Figure 2 - Diagram illustrating deflection
parameters o: an elemental section of the
circular plate sound radiator

nated by the numbers 1, 2, and 3. In such
a planar cylindrical system the equations
of state of the bilamellar disk under sym-
metrical electrical excitation may be
inmediately taken from the tensor form
used by Mason (1).

g _d g 1 dw _
Ty = - €132 a2 S12*y dr T Ey. (12)
__=E _d <E 1 -3
Ty=-Cr— -y g " en ks . (1b)
- dw 1 dw s
DJ = - esxz (-&-;-— + T a;‘)’ (33 EJ - (10)

The negative sign appears in the term -&,, E, for the following reason. If a cylindri-
cal pill of material is scooped from the interior of the ceramic, and if a positive gradient

,
;
et b uA.anmmJ

kb dr
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E; is applied across the thickness, the pill is assuined to expand in the z direction, the
polarization being correctly oriented for this expansion. Now if the material adjacent to
the pill in the z direction is hindered from moving {condition of zero strain), it will
develop a resisting compressive (negative) stress. Similarly, simultaneous contraction
of the pill in the r and £ directions will induce tension stresses in the adjacent material
which are the resisting stresses T, and T,. Since the "effective"” piezo modulus #,, is a
negative number, a minus sign is added {o the term = nFysoastorender T, and T,
positive.

Corresponding to the internal resisting stresses 1, and T, due to the applied field E,
are the internal bending moments ¥, , V. resulting from bilamellar action. By suitable
integrations over the thickness of the plates, expressions are cbtained for these pending
moments in terms of displacen:ent derivatives.

“7.14::[) s codwy_ bRy (2a)
e dc2 Tt dr) 2 ‘

Tordr-pfs &2, 1 e} EnMEs (2b)
22 z uzr—z v a? 2 .

where
M, is the internal sending moment per unit of circumferential length
M, is the internal bending moment per unit of radial length
D is the flexu:sl constant, - (2'3)h3&f
. is Poisson's ratio, which for planar stress is &)3 ¢;;
{ islor 2, dc.. .-iing, respectively, on whether the backing plate is inactive (i.e.,
is metal) 6r » -11+ {i.e., is a ceramic plate polarized for bilamellar action),

assuming, if ac:.s -+, that active halves are connected in parallel

Similarly, the average «i. iric displacement in one plate is

Dy = o-

€3 h d2w _ 1 ds). s
3 (—2 T E;) e33F3 - &)

- ar

As the radiation i v;.--< induces a real surface pressure on the face of ti.e disk
exposed to the medium, an expression is needed for the internal resisting shear ¢, per
unit of circumferen:ial length. Since the opplied electric field E, 1s independent of the
radial coordinate r, we may use conventional thin-plate theory and write (2)

0 -D dx?’.s.’. d? 1 dw
L ‘—;3 T oap? 2 dr [

@

Equations 1 to 4 are the foandation equations upon which the frame of the analysis is
built. They carry with them the limitations that restrict the final formulas to narrow
grounds of validity. In particular, they are piezoelectric in origin, iinear, and planar,
the electric fields are low in frequency and small in magnitude, the sound fields are due
to infinitesimal displacements, an infinite stiff baffle is present, and edge effects, cement
between plates, etc., are considered to affect the results in minor ways only.
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Coefficient of Electromechanical Coupling

The mecharnical and electrical equations (Egs. 2 and 3) for the state of flexure must
be satisfied together; that is, they arise from independent laws of nature and are not
reducible to a single statement except by simultaneous solution. If the expressions for
M_ and N, are added and the resultant soived for the displacement derivatives, we ovtain

a2 1 dw M 0 M FnFyl
de’ 4 r Dl+v) D(1+v)"

i.e., mechanical curvature of the disk is expressed in terms of the internzl bending
moments representing the mechanical and electrical fields. Since the same quantity on
the left appears in the electzic field equation (Eq. 3), we have, upon substitution, a single
equation combining the influence of both fields.

_ 2
_ _Eyh (N +)N, s 3 2%y, \
D3 - 2 (D(l f:l) * 633E3 1+ EL Elﬁl(] + :/)(;3—-,- (5)

This equation is a statement that a charge per unit area on the electrodes of one
plate accr mpanies the condition of flexure. The first term on the right-hand side is the
mechani-.al or motional charge, and the second term is the charge due to applied field.
The couy.line sffect of the mechanical field appears as an increment in the clamped
dielectric cons..nt €3, which takes the form of the second factor in the ~n~losed term.
Such a group of symbols appears in planar piezoelectric analysis and ic <2 .vemently
designated ar th~ coofficient of electromechanical coupling in the flexure mode, Bech-
manr: {3 defines the nixed plarar coefficient of electromechanical coupling (¥, ).;, by
the relaticn

_2

2@
(k:) ot l!_T_
mix o En(1tv)ey,

For the state of flexure, therefore, the coefficient of electromechanical coupling k,’ is

=31y . ©

We note that this equation is independent of the manner in which the disk is mechani-
calily supported. When the structure has one active half and is metal backed, k? =
3/8 (k2. . Equation (6) reveals an important feature of flexural sound radiators,
namefy that the interconversion of electrical and mechanical energy is markedly reduced
by flexure from the latent potential of the planar state to 3/8 { of this potential. This
reduction of coupling is balanced, of course, by the increased compliance of mechanical
swructure and the consequent lowering of natural
frequencies of vibration. In many applications,
. r\ the latter advantage more than overrides the
. - \ resulting poorer power-handling capacity of the

:x/j/ Q structure.
|l o8 o

c—p N

: T E:—:; Mechanical Displacement Under

i [ — Forced Electrical Drive

' NEuTRAL The mechanical displacements of a piezo-
ceramic disk which radiates sound into a semi-

Figure 3 - Elementa! vclume infinite liquid medium :nay be Zound by applica-

of a circular gplite sound tion of conventional elastic and acoustic theory.

radiator Figure 3 shows an elemental volume of the disk
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in cylindrical coordinates; m is the mass per unit of area and M, the total differential
bending moment per unit of circumferential length. Equating internal force per unit cir-
cumferential length on n (F; in the z diraction) to the acceleration of m, we have

diw
Fy =~ = m(edSdry ——
T de?

dr
Now to quantities of the first order in infinitesimals, we see from Fig. 3 that
dan,_ daf
Mp = M, + 3= dr ) (r+dr) dé - ¥ (1d9) - 2 (updr )+ Q rdras
dM, \
= N, - T - N *rO,) drd§.

Letting the primed symbol represent differentiation with respect to r, the force-
acceleration equation becomes

. -‘ . d2'
2"r+tﬂr-“’+fQ Q = - dtz
Although Il and M. are independent of the applied electric field, the magnitude of the
elastic constants & €11, €12, etc., depends upon tlns field. For low electnc fields we
assume D, very small and use the constants €]}, 2,2 instead of the constant 2f;, 25,
eic., where by definition

&= eh arkD
D _ <F 2
€ T8 (1 k).

ror the state of }arger electric fields, D, is hardly zero, and we mast use a value of
g,; that lies between &}, and 2}. In all cases, however, k? is, at mast, about 0.10, and
the correct choice for the constants is seen to be no critical matter. Substituting for n
I,, thus modified for the particular magnitude of drive, we obtain

L2 1 P g n %1
r

‘ dr? t'_2 drz t'3 dr -D-' dsi-d)' F dr e

[+

4

where

The internal shear force Q, per unit of circumferential length depends upon q(r), the
external load intensity per unit area. Static ecuilibrium requires thai

t 4

2rrQ, =j 2nedr (),
()

from whi~h
Q. 1 9Q _ Q(f)

From the assumptions of thin-plate theory, we restrict q(r) to acoustic loads; i.e.,
q(r) is the reaction acoustic pressure p(r). In the condition of steady-state sinusoidal
vibration, the equation of motion becomes

w—ﬁ'm';ﬂ?’w

3

blas

1 ot et
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f : ,
(s (ot d]eme o

where

The surface pressure p(r,«) may be determined from the following considerations.
Since each element of area dA and veloc™ - ¥ radiates a spherical wave into the half
space, the surface acoustic prag ure is a summation of the pressure interacticn effects
of these waves. We have, from * isther (4),

- . --g
p(r.t)=ip';'kj -°;" dA,
A

where R is the <istance from an arb:: cary point P in the plane of the -isk to an element of
area RdRd ¢ and ¢ i= the angle between R and the line P drawn to the origin of coordinates.
For the st:ady state, W i8 equal to jwW, and sincc p{r,w) is a negative quantity, we obtain
the final e .stic-acoustic equation ~f motion

- 2 2 14
PaCq k™ - e-jkg

'\'.':’:-kl":

dRde, (8)
A

where 7w - = W equalc i ‘e’ .hand side of Lc 7.

Except for very sirn.. . geometries and for simple displacement distributions, this
integro-differ:atial equation is intractable. We can svoid this difficult mathematical
situation by making the right-hand side independent o1 the variable r, which means in
effect independe*’ ~f the variable W. The reaction presesure, which is known to te a func-
tion of the coordina:2 r and the frequency «, is replaced by an approximate pressure
constant with radius but strongly dependent on the wavelength of radiation, that is, on
frequency. Insiead then u: seeking an exact soiuticn to the radiatior problem posed by
Eq. (8), we will seek the solution to a germane problem in wkich the cxiernal reaction
pressure of the liquid medium is arbitrarily defined to be independent of r, while still
retaining dependence on «. In place of Eq. (7), therefore, we will set the equation of
motion to be

AL I hg —;—p(;'“’), (®)

where a is the outside racdius of the disk.

The reaction pressure p(s,«) can be only aa average estimate of the true pressure
p(r,»)._ A convenient procedure for determining p(a,«) is to assume a displacement
curve, W(r) for the flexed disk, conformable to the boundary corditions, and perform the
integration required by the right-hand side of Eq. (8). The result of this firat step is the
pressure function p(r,~). McLachlan sﬁ) carried through suci an integration for the
assumed distribution ¥ = W_{1 - 7(r?/s*)] and found that

. g2 s 3 . 3 s
pr.t) = pe ¥, [-;—.' €2-47 8 tar 6=t (t;; -Gt srEs '")]. (10

where g, and g¢ are known algebraic functions of the radius r, and g, and gg are known
hypergeometric functions F(a,8,7,5) of the same coordinate, The symbol ¢ stands for the

JRPREPIR Y
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NAVAL RESEARCH LABORATORY 7

wave parameter ka. The !nfinite series of Eq. (10) is applicable to any size disk having
the velocity distribution prescribed. In genera:, however, the frequencies corresponding
to the grave mode of vibration are so low that ka i8 less than 1/2. We assume, then, that
ks << 1/2 and write, after McLachlan (5),

R 2
plr.t) = pe N, [ﬁgi + ey (1)

for the case of the centrally supported disk. The exact expresgsion for g, is

11 N _1-{11 2
2'2""’) 5’(7'2'2"’)-!
-

L]
-t
1
Nlo-‘
b ]
[
Njw
-
N
-

o
O’N
—
+
-3
~

ny '
-
b

The average pressure p(a,t) is found by averaging Eq. {11) with respect to disk
area. The result is

. 2
pla,t) = pe W, [—Qi:-)— +j 153-6; ka]. (12)

A convenient symbol for the impedance portion of this equation is Z(a,«), defined by
the relation

p(s,t) = Z(a,0) W,

2
Z(a,w) = p,c, [—Q‘P— - ka].

Having now defined the nature of the expression p(a,t), we return to Eq. (9) and sub-
stitute our results, recalling that in the steady state, W = juW,. We have, then,

joW, Z2(s,w)

AL I ' - (13)

This is an inhomogeneous differential equation, the right-hand side of which is independ~
ent of the coordinate r. A particular solution is easily seen to be

jo¥,Z(a,w)
D'k

The complementary solution of the homogeneous equation is found in various texts,
e.g., Ref. 6. Adding the particular solution to the complementary solution, we obtain the
complete solution

v = kr) + BYp(kr) + yI,(kr) + 5Kq(k jolla,w) N,
(r,w) = aJo(ke) + BYo(kr) + yI (kr) + §Ko(ke) - b.k; ’ (14)

where a, 8, ¥, and 5 are four constants, to be Jetermined from the conditions of support.

The boundary conditions for the case of a flexural disk supported by a rigid built-in
central pin (radiusb) are easy to formulate, but thev may not correspond to the actual
stress configuration because of local yielding, rotary inertia effects, etc. At the risk then
of stipulating what may be an ideal situation at the point of support, we specify that

§
3
i
!
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at r = b at r= s
1. =0 3. M_ =0
o5 dW _ -
2. rriiy 4, Q. =0

Four conditions are thus available for determining the four constaats a, 5, v, and &
by employing explicitly the generai gsolution contained in Eq. (14). Upon performing the
necessary derivations, we come to

jwZ(a,w) W,

aJo(kyb) + 2Yo(kyb) + ¥Iy(kyb) + 8Ko(kyb) = W (15a)
1
~kf{aJy(kyb) + 3¥(k;b) = ¥Ij(kyb) = 8K,(kyb)! = 0 (15b)
. __3% E5
aky + BAy + YAy + BA, = -?E_ID;E (15¢)
k3 {aByj + 3B, + yBy + 8B} = 0 (15d)
where

A; = =Jo(kya) + (1 = ¥)]y(k8)/k, 8
Az = -Yo(klﬂ) + (1 - ”)Yx(kl.)/kl.

A3 = —I5(ky8) -~ (1 - )1 (ky0)/k, 8
Ay = Ko(kya) + (1 - v)K,(k a)/k;a
By = Jy(k;a), B, = Y (k;a), By = I,(k,8), B, =-K,(k,a,.

Simultaneous solution of Eqs. (15a, b, ¢, d) is rapidly perfcrmed by use of Cramer's
rule. We can, however, simplify the results by noting that for centrally supported digks
the ratio b/a is considerably less than unity, so much less, in point of construction, that
we may assume that b—0 without major error. As a consequence of this choice, Eq.
(15b) reduces tc

Limit vy (kyb) + 5K (kyp)) = 0,

or

1Y
to
1
o
n
(-]

Substituting tnis result in Eq. {15a), and again letting b—0, we obtain

juZ(a,) W,
a ¢+ VT e——

1 4
I)kl

Completing the solution for the two remaining conditions, Eqs. (15¢) and (15d), and
substituting the results in Eq. (14), we obtain

Y
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2 2 2
S ={"n (32; o Bq) ‘o @3 (Az +;A4) ;Aa (Bz + ;BL)-I} Jotegr) = ToCkye)l-

(B, ~ By" A3(By - By) - By(A; - A
+[1; lA 30, M- B = 3(Ay 3)] [Yo(klf) *%Ko(klf)}
+ olIoliyr) - 11, (16)
where
_3 €3 E; _ joZ(s,w) W,
n 4 —D hkl D’ k;

2
The important quantity, of course, is the displacement at the outer edge, W,. At. : s,

!i"sz—‘k‘—‘i) {B3 [A, +2 A,] - A {a, +§a.]} [Jo(ky8) - Io(k,a)]

A -

jwZ(a,w
- ’——D.(k’: ) {A3(81 = By) - By(Ay - A_-,)} [\’o(kla) +%Ko(k1“)]

bjwZ(e,w)

- -—I)Tkl‘_ (Io(k,a) - 11, (17)
The edge (maximum) displacement W, is proportional to the electric gradient E, (that

is, proportional to the constant 7). In the absence of acoustic load (i.e., when Z = 0) the
expression for A becomes zero for an infinite number of values of ka. The lowest of
these (excluding ka = 0) corresponds to the grave (or umbrella) mode of vibration; .«
remaining values of ka correspond to modes of vibration consisting of a successively
increasing number of nodal circles. With the accession of an acoustic 'oad the denomi-
nator, for certain values of ka, reaches a minimum, but it may never be zero, since
Z(s,») is a complex quantity. We note in particular that it is the resistive part of 2(a,)
which contributes an imaginary term to the denominator and :hat a purely reactive load
will not restrain the motirn of the disk at mechanical resonance.

Transduction Ratio
The time-varying charge Q accumulating on the electrodes of one plate is obtained

by integrating the expression for the dielectric displacement, Eq. (3), with respect to
plate area. We have {assuming b—0)

‘(a1 4w
Q = J’ D3 dA = “331 hr “‘ (:r + ? d‘.) rdy +77l2 €;3E3
A (]

-

— 1
Q=-m&y ha [%J,.. + ma? €33E3. (18)
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The alternating current due to an applied voltage V; (across one plate) is therefore

Co ”7{32*%34)
i = jwn€yhka = [Jy(kyn) + I;(k a)]

A

7(B; - By) 2
t———F% [Yl(kla) + = Kl(ka)]

2 2
'Z,WBA+—A-AR+_B-|
+JwD(.aka:)o[3(z 7 4)A 3(2 7 ‘)JUx(kxa)+I;(k1a)]

1

TN

j»2Z(8,0) W [A3(By - By) - By(Ay - Ay)
+ 3 0 [ 3\P1 3 5 3\ 3 ] [Yl(kla) 7%1(1()(13)]
1

jwZ(a,w) W

i ° I‘(kla)} + jwCv,. a9)

While the electric current thus found i3 a useful parameter in exploring the accustic
performance of a centrally supported disk radiator, successful application of four-
terminal network theory requires some simpler form than that presented by Eq. {19).

To obtain a more convenient expression for i, we note, from Eq. (16), that to a first
3 approximation in kr, the deflection ¥ has a paraboli~ distribution with respect to the
coordinate r; that is, W ~ r2. If then we assume a ueflection curve of second order in r,

W= W (r¥a?),

E we find (%) = % LA (second-degree terms in W only).
fag
The charge for a condition of parabolic distribution becomes
lQl =NW, +nma2ed Ey, (20)
where N = 2 &3, h = n&;, t.

The symbol N is the ratio of electric charge accumulating on the electrodes of one
plate to the peak mechanical displacement (at the edge of the disk). To the approxima-
tion of second-degree terms 1 r for the variation of mechanical displacement with radius,
N is seen to be a real number. When fourth-order terms (and higher) in the deflection
curve are considered, the magnitude of the siope diminishes, and with it the transduction
ratio N. To find the transduction ratio corresponding to higher order deflection curves,
we assume more complex displacements, consonant with the boundary conditions, or,
alternatively, we assume some known mechanical load on the surface of the disk. Two
examples of the former method and one example of the latter are given below.

Example 1. Let the displacement curve be of the form

w-w, [A ({)2 +B (i)‘]

This type of variation with radius has been used by investigators in recent times.
Southwell {7) has shown that such an assumed curve yields a value of grave resonant fre-
quency 75 percent of the correct figure, if A - 1 and B = -0.275. Proceeding with these
assigned values of A and B, we obtain
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g!\ = 0.9
* (dr/t-l )
and
IN| = 0.457€,,¢t.

Example 2. Let the displacement curve be the one which Southwe!l has shown to
yield a value of grave resonant irequency 99 percent of the true value; that is, let

r 2 -2
W= qu - q—(%——l 292 12 1og -:“]
q = 2.89.

Proceeding with the integration, we find that
IN] = 0.527&,,¢t.

Example 3. Let the disk be loaded on its surface with a uniform real static
pressure p,. It is easy to show that the total charge {Q| from one plate is

lof =3 BTT .3 a2y g,
t t
where F = p,7a?.
From the theory of elasticity,
= Fa?
° mYEe3 S
Hence
lol =2 7 ¥Edy e,
= 0.525 75, t W, (for » = 0.3).
Therefore [Nl X 0.53 ney, ¢,

The inclusion of te;ms to fcurth order in the slope (d®/dr)r = a reduces the transduc-
tion ratio found for parabolic distribution by a factor of 2. Correspondingly, the presence
of an external static pressure load introduces a similar reduction in N. Terms higher
than fourth order affect these results in minor ways only. We conclude that the trans-
duction ratio under actual operaling conditions lies between |N| = 7&,; ¢t and N|=(=/2)8;t.

We have now reached a point in the analysis where further progress is impeded ty the
complexity of the approximate deflection curve as revealad by Egs. (16) and (17). It is
more convenient, from this point on, to assume a deflection curve of zimple algebraic
form, consonant with the boundary conditions, such that computations of acoustic power,
etc., are facilitated. Such a choice wovld ieave one factor, namely the peak displacement
W, indeterminate. However, the transiuction ratio N relates w_to the charge ¢ and
therefore relates mechanical force F to applied voltage V,. With ihe magnitude of N
explicitly known, the peck ! .splacement, velocity, etc., becowe electrical quantities whose
magnitudes are then prec.sely determinable. In accordance with this procedure, then, we
choose a deflection curve of simple parabolic form, namely ¥ = W, (r/¢)?, and proceed.

laa A aatunt
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Radiated Acoustic Power, Mechanical Reactive Power, Kinetic
Energy, Resonant Frequency, Acoustic Pressure and Mechanical
Q of a Centrally Supported Disk Whose Deflection Curve is
Parabolic (Second Order in r). Infinite Baffle Present.

In the far field, at a great distance E from the infinite baffle in which the disk with
parabolic deflection is located, the radial distribution of real acoustic pressure p, hss
Lieen found by McLachlan (8) to be

z z2 "l)

_ p,,,ioa2 [Jl(z) 2 Jz(z)]
P © R -

z = ka sin 6 k = -2-/\1 A = wavelength.

Since the liquid-particle velocity v at great distances is p /o c_, the peak sound power

P_ radiated into semi-infinite space is

”

2
Pu (= (F[Ta(D) 2J,¢
P_:f p.vdA=2n~—c—:"2I [‘ - Ja z)] sin 4 d8
v °

z 22
or

L3 m .| 2m
2 Pw.2 4 (-1)" 2 (ke)
Paz25 % » Z (m+ 1) (2m-1)...

[DAERRE T e Y

. (22a)
((2+m)! (1+m)!  (4+m)! (2 +m)t?  (3+m)! (1+m)! (2 *m)i'
When this expression is expanded, the peak real power becomes
Py 2
P, 2mgr ot [ S04 Byt -] (22b)

At the frequency of mechanical resonance in the grave {umbrella} mode, the magni-

tude of ka is usuaily less than 1/2. Limiting the infinite series of the above equation to
the first term only, we obtain

7 Pw =2 {peak power for condition
P. = ?' 'o 03.‘ ke << 1/2). (220)

The mechanical reactive power P, can be derived by z similar procedure applied to
the reactive pressure P;, explicitly written in Eq. (10). As in the above case, we limit
the expression for p; to the first term in ke and write

T
P, = JA p; vdA

1
jo'c.znazi:(ka)j ubid.
(]

Since the value of the integral is 20/63~, we have

JERPPRRRON AT P
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P = jwL W2 (232)

40
Ll 63 p' . (23b)

The parameter L, is the inertial mass which the liquid medium adds to the disk
flexing in the grave mode. It coincides with the values found by McLachian (5).

The magnitude of the kinetic energy of vibraticn (T,) of the disk with no acoustic load
is also found by a simple integration:

or

" =%‘Wo ' M=ﬂlzppt~ (24)

The lumped mass, corresponding to the edge velocity "o, is therefore 1,3 of the
actual disk mass. Adding to this lumped masgs the inertial mass of the water (L,), we
obtain the total kinetic mass M,, corresponding to W,

N =""32 Fp(1+£) (25a)
- 120 p' .
P28 7t - (259)

The presence of a semi-infinite liquid medium may be thought to raisa the density of
the plate from its value p,t0 po,(1+3). L. an ordinary design for a water medivm p /Pyt
is close to unity, making 5 about 2/3. One result of this added mass is to lower the
natural resonant frequency =, of the disk m the grave mode from its vaiue in a vacuum
(approximated by air) Ly the Tactor (1+5)%. An expression for «, may be obtained by
solving the seeular equaticn

A=0, (26)
where A is the denominator of Eq. {16) in the absence of acoustic load. We obtain as the

first root of this equation the value ka = 1.933, 2 magnitude quite ciose to ka = 1.937 fcund
by Southwell (7). Upon solving for «,_, the vacuum resonant frequency becomes

AN
1.8l % c., e =(_pl‘_)_ (27)

.2? L4 o

Hence the resonant frequency in a liquid medium (wp) becomes

D ®
- cm Lo Y P ¥ (28)
RS ST \p,(14H) -

A spherical wave (such as is radiated by the disk for the condition ks << 1/2) of
source strength Q,, looking into a semi-infinite medium bounded by a stiff bak{ie, develops
a pressure p in the far field (distance ®) whose expression 4) is

-k
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We omit the time-dependent faztor. If the velocity distribution over the surface of
the disk is parabolic,

Q, = “ v,dA:j‘ .Io(-;)z 2rr dr

na?/2) ¥, .
From this, the absolute magnitude of far-field pressure is seen to be

2.2
pu &
= X 29b)
ipl = aa . {29b)

Anotber important performance parameter of the disk sound radiator is its natural
damping factor a4, or its steady-state mechanical ¢,. For assumed parabolic deflection,

the rms radiated power (P,.,) is

4

2 w
o & -

" Py

Prns = % d
The rms kinetic energy of the plate and water is one-half of the magnitude found

previously, since this quantity varies a5 cos%t- In any cycle of vibration, however, the
mean energy T, is twice the kinetic energy. Hence the mean energy of plate and water is

L malp (144t . o
Tn = ——2_—_6 q -
Now the diminution of mean energy during free vibration is equal to the radiated
power; that {s,

dl
T,'tg Pr-x'
or
np (l*ﬁ)t'oionz _ .1’_“,2.”_"' 2 .4
3 T e, ot
From this,
'o = -a W, .
where
2,2
Og 8
Y XENIET) (30)

a :.;_ -
4”16 Pt € (1+5)

The quantity a, is the temporal damping factor for free vibration, when the damping
is due antirely to radiation. With it we can derive an expression for the number of cycles
of {ree vibration (at resonant frequency «y) that must be completed for the amplitude W,
to be reduced {0 1/e of its original maximum value. This iS wy/2n 2, and bence

“R Y p,c.
Toe; 0.788(1 + 3)>2 G

t
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Now by definition, the mechanical Q is

OJR
Q* 5, -
Therefore
2 .C
Q, = 2.471+5)”7 2= @1

P

Mechanical Disptacement Under Forced Mechanical Drive
and Receiving Respons~

A steady-state (sinusoidal) pressure of magnitude p, (independent of the parameter
ka) is allowed to drive the submerged, centrally supported disk. We stipulate that
ka << 1/2 anu write the equation of motion as

v‘w-k:Vi=¢+¢”. (32)
where

j “’z(.'w)
P

P
Q= :p'-:.F:’..

As for boundary conditions, we require that D, = 0 (i.e., open circuit). Assuming
ouce again that b/a << 1, we obtain for the first two boundary conditions

aty=¢@+o'
B-5=0.

Proceeding with the two remaining boundary conditions, solving for <, 5, v, and & on
the assumption that E- is zero, and substituting in the displacement equation, we obtain

B e+ 2m4) = 50 < 2 1) 3~ T+ By~ gy Bt + 20

v = ——
° a- L 2[5 (A +200) - 45 (B2 + 28| o) - Toye0
jwa,w) . 2 jowZe,w) -
AR CR SEXIRR A Roly®)] - e oo

(33)

The compiexity of this expression requires that some simpler representation be
sought for the accumulated charge |Qf due to the pressure p, than is contained in the
requirement that | = =&;, ha(dW/dr),,,. We assume, as before, a parabolic deflection
curve, and calculate the open-circuit voltage Vv, due to iQ| stored upon a capacitor of
areans?, thickness h, and dielectric constant €3;. We have then

v _ Esx tz n 'n
P ¥ 2 €3, (s4)

where n = 2 for parabolic displacements. We can use the same formulation for the case
of fourth-order terms by setting n = 1,

3
o+
. JJ

ozl
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It is useful, at this point, to derive an expression for the receiving response at fre-
quencies s0 low that Z(a,«) becomes negligibly small, that is, at quasi-static load condi-
tions. From tiie theory of elasticity,

w, at

-p—o = Wv— (static load),

where ( YOD)M, is the average Young's modalus at zero current.

Upon substitution, we obtain

L'z eyn
t s D
€33 Yoy

F

plo = (static load). (35)

Formulas Describing the Acoustic Performance of a Metal-Ceramic
Bilamellate at Mechanical Resonance, Radiating.Sound into a Liauid
Medium. Parabolic Deflection Curve Assumed and Infinite Baffle Present.

At mechanical resonance in the medium, the magnitude of edge velocity ¥, is gov-
erned solely by the radiation resistance of the medium to the disk vibrator. Since the
real acoustic pressure for the condition ka << 1/2 is independent of radius, the total
mechanical force restraining motion at mechanical resonance is Fy = pra?. We know that
edge velocity and pressure are related through the impedance equation, Eq. (10). Hence

2 2
- p'c'(k:) Te io . (36)

When electrically driven by a voltage v,, the applied (mechanical) voltage force NV,
balances the mechanical resistance force Fg in the steady state. Recalling that N = n&,,¢
for the condition of parabolic distribution, we find, for edge velocity,

v - 4NV
°  pc (ke)ima?’
or
. 3
W =171 &3y ———.
o 31 C;z o, (37)

This is a key equation, for with it, and with Eq. (28) for the resonant frequency «y, we
can substitute into Eq. (22c) to obtain an explicit equation for the acoustic power

2
cy V3
2 °
Py Cp

P, = 5.36 (38)

Similarly, substituting Eq. (37) into Eq. {29b), we find that the (real) acoustic pressure in
the far field (distance R) for ka << 1/2 is

0.924 &, ¢
lpl = ————v;. (39)
R L

As for receiving response (V/p,), when an alternating pressure of constant magnitude
P, is applied (at the mechanical resonant frequency) to one side of the bilamellcte, and
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when simultaneously the electric terminals are open-circuited, an edge velocity is ini-
tiated whose magnitudn is

4p,
wo = ._—_._?_
PeCy(ka)

In consequence of the electromechanical coupling action, an alternating electric cur-
rent i=NW, flows through one plate of the disk and charges the capacitance C* to a potential

Nﬁ _ 4p, N
C*  jwC* §p.c (ka)dwglt

Substituting for «p and N, we obtain

2

v a’ &y c, (40)
— = 1.582 —_—7
(p°>u-NR t E:ISP' cp

The open-circuit voltage reported by this equation depends, for its magnitude, on the
presence of an infinite stiff baffle. In the absence of such a baffle, the magnitude of
responce would fall by a factor of 2. The response, in any case, is that across one of the
two possible active plates of the disk.

Conclusion

Equations (6), (27), (31), (87), (38), (39), and (40) are the most useful results of this
part of the analysis. Taken tofet .er, they form a relatively complete summary of the
acoustic performance of a centrally supported piezoceramic. One seemingly vital equa~
tion appears missing, namely an expression for the motional admittance. This {snota
serious omission, sin-r the small magnitude, of flexural electromechanical coupling
renders the bilamella almost a pure capacitor, when loaded by a liquid medium. In
many instances the m .unal resistance is less than 1/10 of the reactance at mechanical
resonance, and for modcer. '~ power absorption the current {low through the radiation
resistance is relatively sr....I. No great error therefore ensues in treating the bilamel-
late as a "pure" capacitor. As for materia.l constants, it i3 best to determine these by
actual test; e.g., it i8 best to detzrmine cp by measuring the resonant {requency in the
liquid and computing this quantity irom Eq. (28). Only in this way can one avoid dubious
values for these parameters. Preliminary estimates of the values of these parameters
based upon the available literature may be obtained from Table 1, which lists the piezo-
electric properties of three popular piezoceramics.

An alternative procedure for determining the electrical series resistance R at veloc-
ity resonance is to assume that R = Xp/Qg, Where Xg is the blocked series reactance at
resonance and Qg is the electrical Q. The factor Qz may be obtained from a knowledge of
0, and k! by the additional approximation that Qp = 1-k2/k,? Q,. At velocity resonance
therefoce the electrical impedance is approximately

Xg
Z(w-uk) i - xB '
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TABLE 1
Material Constants of Polarized Ceramics
E
Electromechanical Ceramic
Property t
Ceramic B PzT-4 PzT-51
(See List of Symbols) | 5 G, CaTiO; | PHTIO, - PbzrO, | PLTIO, - PbzrO;
€5; (planar stiffness) 127.9x 10° (N/m?) 91.3 x 10° 74.7 x 10°
1> (planar stiffness) 38.3x10° (N/m?) 27.9 x 10° 23.0 x 10°
s (compliance) 8.62x10"2(m¥N)| 12.05 x 1012 12.65 x 10°12
kp (planar coupling 0.33 0.48 0.54
coefficient)
¢ y (strain-electric -58 x 10-12 (C/N) -97 x 1012 -140 x 10-12

field modulus)

€3;; (planarpiezomodulus) | -9.45 (N/mV) -10.38 -12.01

€33 (blocked dielectric 9.64 x10-°(C/V,) 7.89 x 10-° 10.24 x 10-°
constant)

¢35 (dielectric constant at | 10.7 x 10-°(C/V,) 9.7 x 10-? 13.22 x10-?
zero stress)

s, (ceramic density) 5.4 x10° (kg/m?) 7.6 x 10° 7.6 x 10°

v  (Poisson's Ratio, 0.3 0.3 0.3

*The chemical content ¢f the above listed ceramics may be obtained by writing tc the
author of this paper.

tThe two PbTiO3 - PbzrO; mixes are different in composition.

EDGE-SUPPORTED BILAMELLATE DISKS

W2 shall consider in this part a bilamellate disk of two active halves, simply sup-
ported at its outer edge. Care must be taken, in building this structure, to insure sim-
plicity of support, i.e., to insure absence of clamping while at the same time not restrain-
ing radial displacement along the outer rim. In any case, the boundary conditions ¥ = 6,
M, = 0 must apply; that is, the external casing must restrain but not flex the disk.

Coefficient of Electromechanical Coupling, Bending Moments,
Dynamic Equation, and Solutions
A few of the results of the previous derivations are immediately applicable, since

the mode of mechanical support does not enter into the basic equatioas of state. From
Egs. (2a) and (2b), we obtain (since } = 2),

‘t = p* [—— + l;— a?] - 331 h233 (‘1‘)

My = D'{v :",;3 ' %a?]- €1 h’Es. (41b)
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Similarly, the coefficient of electromechanical coupling in the flexural (grave) mode is

- 3
k¢ —l/ vy (kp)lux . (42)

In order to write the dynamic equation, we need an expression for p(a,«), as required
by Eq. (9). Now the radial distribution of pressure p(r,t) has a form identical with that
expressed by Eq. (10), with the exception that the g's (hypergeometric functions) contain
additional terms. Restricting ourselves once again to the condition ks << 1/2, we employ
only faciors g, and g, in the infinite series of Eq. (10). On the assumption that the
deflection curve has the form ¥ = W_[1- (r/2)2], w2 consult McLachlan (5) and find that
g2 =1/2, and gjis

= r(-1.1, 007 -{3r (2,14 17) z[(.ll ) -1r(-1.1.2.09)
KI‘F(zlztlnb) {3F(2.2.1.b +b F 2'2'lob 2F 2o2029b .

Performing once again the necessary integrations, we find that the reaction pressure,
averaged over the suriace area of the bilamellate disk, is

p(a,w) = j“"'c z'(‘-“’) (433)
2
Z'(a.0) = pee, [—Q;—')— tie kn] ) (43b)

It may be concluded that a change in the mode of support has altered the pressure
distribution in a minor way only, assuming, as has been done, that the deflection curve is
parabolic in both conditions of support. Equations (43a) and (43b) lead directly, in con-
junction with Eq. (13), to the equation of motion (steady state):

jw¥, Z2'(s,w)

4 4y -
V'-Itl'— >

(44)

Although Eq. (14), with ¥, replaced by W, is a general solution of the differential
equation, the boundary conditions noted in the introduction to this section of the analysis
require that 5§ and 5 be cero. Our general solution to Eq. (44) is therefore

on

N = L iwZ'(aw) _
Wr,w) = cJolkyr) + ¥ Tglkyr) _D:;,‘—- s 5)

The two conditions that determine q,y are

joZ'(s,0)W,
aJo(kia) + vIn(ky8) = oo

Y
Dkl
3 &1 5
a\‘ +‘yA3:—— -—— .
2 D2
nkh

Upon solving these simultaneously and substituting the results in Eq. (45), we obtain

€, E, [Io(k,.) Jolkyr) - Jolicye) xo(k,:)]
Al

o2 (aw) o [AsJo(“:') - A Io(kxﬂ] jw Z' (a,0)
D. kl‘ < A' - D. kl‘ c ¢
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where 8’ = A3 Jo(kia) - Ay Ig(k,a). (46)

From this, upon seiting r = 0, we obtain

v = é 331 £3 [Io(klﬂ) - Jo(kla)] .
<~ 2 -c'lv1 kxzh [A’ R jwld'Z' (a,w) _ jwZ (a,w)(As-AL). 7
D* k; D’ kl4

The displacement ¥, according to Eq. (46), is parabolic to a first approximation in
the parameter kr. We have seen (Eq. 20) that for such a distribution of deflection, the
transduction ratio N for one plate of the disk is €5, t. Under surface loads, however,
the transduction ratio diminishes, as may be seen frum the following development. Let
the simply supported disk be subject to a static surface pressure p,. The charge accu-
mulating on one pair of plate electrodes is

s_+ s
Q:duf '2 t21rx~dr.
(

where

dy; is the electric displacement-stress "effective piezo modulus
s..s, are the radial and tangential stresses induced in the disk by the load p,.
From the theory of thin plates, it may be found that

Upon performing the required integration, we obtain

9
Q= R 7Y,tdy W

-
<

that is, the transduction ratio N for the (static) loaded state is 3/4 of the value predicted
by a parabolic deflection of the disk. When two plates are considered, the ratio, of
course, will be twice the value of one plate. The advantage of using two active plates is
thus clearly evident, since the coupling, power, pressure, etc., will all be improved.

Acoustic Power, Mechanical Reactive Power, Kinetic Fnergy,
Mechanical Resonant Frequency and Mechanical Q of a Simply
Supported Disk Whose Deflection Curve is Parabolic (Second
Order in c¢). Infinlte Stiff Baffle Present.

An expression for the acoustic pressure in the far field ‘distance R) due to a

baffled disk having a deflection curve of the form W = ¥_[1 - (r/2)%- is yiven by
McLachlan (5):

o
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20, a? irc Ja(kqya sin 9)
Pe = .
: T (kya sin 8)2 (48)

A suitable integration over the spherical area of radius R of the produc* of the acous-
tic pressure and the particle velocity yields the peak acoustic power radiated. ' symbols,

.. J' 2
P, J;p.vdA—p'c'ApdA

- I 3.2 (k,a sin 6)
=8ﬂ—::—:wc28‘j 13—’——_———‘—aint9d8.
- o (k;a sin 6)
Upon evaluating the definite integral, we obtain
® 1\2(2¢m) 2
- 8 x 4,-,22 cre ey (3) (ka)™ 2% m!
Pa=brg o R (s mi(a+m)t (2+m)!2 (Zm+1)(2m-1) ... °

or , *
Pozror il [A- G0 ] 9)

We note that if ka << 1/2, the expression for peak acoustic power in the medium due
to a flexible simply supported disk is the same as for a centrally supported disk, both
having parabolic velocity distribution and both having equal maximum dispiacements.

To terms of first order in ks, the r~active pressure on the surface of the disk is

P; = jAuca W (ka)g; -
The magnitude of reactive power in the medium (P,) is therefore

P, = jw2nadp WZ | gj(1-b2) bdd
]
or
_ . 248 =2
P2 515 “Pu 3w . (50)

The mechanical reactive power of the medium whose expression has just been
derived is due entirely to the inertial effect of the medium. If the motion of each ele-
mentary volume of adjacant liquid is referred to the peak velocity W_, we see that the
inertial mass added by the medium is p, 23 (248,/315). Since the kinetic energy of the
vibrating plate T, is

T - J o.c 2 (ke) 27 o2 (1-b2) bdb
[]

N»e

ww "¢

1 .2 -2
§7° pvt'c .

we conclude that the total effective mass of plate and waier (uq' ) referred to the peak
velocity w_is

i 2 -~ Dom bt Loy oo
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3 ":1:31%_"32"9‘(1*‘3')

.

: . _ 3 [2a8) Ps? Pu®
f ﬁ = ;/-(Tl—s-)p—:? = 0. 752 p—;"- (51)

By thus increasing the effective mass of the plate, the liquid medium acts to reduce
3 the natural frequency of vibration in air «; by the factor (1 +5')"% An expression for
3 w, is obtainable from Eq. (46) by setting Z(s,») equal to zero and solving the secular

equation A’ = 0 for the lowest root, excluding ka = 0. We cbtain, for this lowest root, a

valve ka * 2,252, from which we find that the grave resonant frequency of a liquid-loaded,
simply supported plate to be

t .
1.468 3—2 <, (52)

£ D %
< &'t = ( 11
3 P Pp(1+8°) )

Y

Since for equal maximum displacements (¥, = ¥_) the radiated acoustic power is the
same whether the disk is simply supported or centrally supported, and since for parabolic
displacements the kinetic energies of the unloaded plate are also identical, we see that the
temporal damping factor a; has the same form as in Eq. (30), with the exception that 8 is
3 replaced by A’ and wg is replaced by wgz. The mechanical Q, therefore, becomes

wp ,3/2 pocy
= —==1.81 (1+ L
Q. Tag (1+8") Poc, (53)
4 where
3 =D
E e =1
P pp

1 Formulas Describing the Acoustic Performance of a Simply Supported

1 Ceramic Bilamellate, at Mechanical Resonance, Radiating Sound into a
: Liquid Medium. Parabolic Deflection Curve Assumed, and Infinite
Baffle Present.

A In this section the same reasoning and the same steps in derivation are appilied as

1 was used in obtaining Eqs. (36) to (40), with the additional consideration, however, that

3 the transduction ratio N is, for the entire disk, 2X the value previously used. A first
result, employing N = 2+€,;t, is the center velocity, ¥.. We obtain, for this key parameter,

W= 185 —g—. (54)

Similarly, using Eqs. (29) and (52) and this value for i'c, we derive the expression
for the acoustic power radiated

LA T (55)

As for the acoustic pressure, it is noted that when z << 1/2 the limit of J,(2)/2° i3
1/8. Hence the resonafti acoustic pressure in the far field (distance R) on the acoustic
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axes has the same form as in Eq. (29b), with the exception that ilc replaces \'vo and wg
replaces wy. Substituting as before for «y and ¥_, we obtain

c,. V3
c'*]

!p‘ = 1.36 831 (56)

A procedure similar to that which led to Eq. (40) yields the resonant open-circuit
receiving response

v _ a? €31 ¢, .
(F.,) =0.82F S (57
= wR 337w "p

We cuserve here the same precaution in the application of Eq. (57) as was noted in
the application of Eq. (40), namely that this is the response from a single plate (of two
possible active plates) and that an infinite stiff baffle bounds the half space from which
the incoming signal takes its origin. In the absence of the baffle, the response will fall
to a value of one-half that noted above,

Conclusion

Equations (49), (52), {53), (54), (55}, (56), and (57) constitute in their entirety a sum-
mary of the acoustic performance of a simply supported flexural bilamellate disk radiat-
ing sound into an infinitc half space. All the limitations, precautions, etc., noted in the
discussion at the conclusion of the earlier derivations are applicable to these last resuits.
In particular, it is of importance to repeat the stipulation mentioned previously that all
material constants occurring in the formulas be determined by test upon an actual disk.
Substitutions fcom gereralized data available in the literature may, or may not, lead to
dependable results. And a final point: all power, pressure, and voltage response for-
mulas are based on assumed 100-percent energy conversion, no losses occurring on the
way. In actual practice, overall conversion efficiencies vary from 40 to 70 percent at
low electric drive {0.01 volt rms per mil of thickness) to 15 to 20 percent at high, elec-
tric drive (10 volts rms per mil of thickness). In practice, too, the material constants
€5, and 2], are lossy li.e., are complex quantities) and are frequercy sensitive. From
these remarks, the approximate nature of the derived equations may be surmised.
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Symbol

CS

€11+ C1q. elc.

€31

E,. E,

z.
f
gl' 83' etc.

h

T (2). T(2),
Yn(z). Kn(z)

k
ky
k¢

M

T

T P S PP

LIST OF SYMBOLS

Deiinition
area in square meter
radius of plate (meter)
capacitauce (farads) at constant strain
stiffness moduli (N/m?)
velocity of sound in water (m/sec)
stiffness constant, (N-m)
electric displacement (coul/m?)

piezo modulus

electric field (volt/m?)
irequency (cps)
hypergeometric functions
hali thickness of plate (m)

Bessel Functions of order n and argument z

wave number, (m-!)

3p, w?/h? tﬂ

coefficient of electromechanical coupling in flexural mode
radial bending moment per unit of length (N, /)

tangential bending moment per unit of length (N, /)
transduction ratio

acoustic power (watts)

real pressure

inertial reactive pressure

charge (coulombs)

mechanical Q

24
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LIST OF SYMBOLS (Continued)

Symboi Definition

Q, internal resisting shear per unit of circumferential length
R distance in sound field (m)

r.5, 2 polar coordinates

S, radial strain (= )

S, tangentiai strain {= n)

T, radial stress (% ~2)

T, tangential stress (N w?)

v, applied voltage (volts)

v velocity in meters per second

w plate deflection in z direction as a function of time (m)

L] plate deflection in z direction as a function of frequency (m)
v, p subscripts for water, plate

YE Young's modulus (N/m?)

z acous':ic impedance

z ka

. S, Y b, T constan:

€33 dielect~ic «.1istant at constant (i.e., zero) strain (farad/m)
4 1 or 2, dep2nding upon backing plate of bilamellate

5 density {x_ ¢ %)

v Poisson's iatio

" angular frequency

A special denominator in Eq. (16)

NOTE: The MKS system is used throughout this paper.

—maTe T Sa ¥ & ms L=t co i) AT W e Pagios Mash 2ole g £ SAdety Awwrtrg!ﬁwa
B
-

Chimama sl

Lot akx

PR STR S



TR CATE

o - _, ey - o

A s e L e - L L i N s St Aot g o e N R e o) e -

REFERENCES
Mason, W. P., "Piezoelectric C:ystals and Their Applications to Ultrasonics," New
York:D. Van Nostrand, pp. 486 ff., 1950
Wang, C. T., "Applied Elasticity,"” New York.McGraw-Hill, p. 293, 1953
Bechmann, R., "Elastic, Piezoelectric, and Dielectric Constants of Polarized Barium
Titanite Ceramics and Some Applications of the Piezoelectric Equations,” J. Acoust.
Soc. Am. 28(3):347-350 (1956)

Fischer, F. A., "Fundamentals of Electroacoustics," New York:Interscience Pub-
lishers, p. 134 (1955)

McLachlan, N. W,, "The Acoustic and Inertia Pressure at any Point on a Vibrating
Circular Disk," Phil. Mag. Series VI, 14:1012-1025 (1932)

Kamke, E., "Differentialzleichungen, Losungsmethoden und Losungen,” 3rd ed., New
York:Chelsea Publishers, 1948

Southwell, R. V., "On the Free Transverse Vibrations of a Uniform Circular Disc
Clamped at its Centre; and on the Effects of Rotation,” Proc. Roy. Soc. (London),
Series A, 101:133-153 (1922)

McLachlan, N. W,, "Loudspeakers; Theory, Performance, Testing and Design,"
Oxiord:Clarendon Press, p. 108, 1934

26




